This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STUDIES WITH ALKYLHETEROCYCLIC CARBONITRILES: A NOVEL SYNTHETIC ROUTE TO SEVERAL NEW ANNELATED PYRAZOLO[5,1-C]-1,2,4-TRIAZINE DERIVATIVES

Ahmed H. H. Elghandour^a; Hussein F. Zohdi^a; Hussein Y. Afeefy^b; Mohamed K. A. Ibrahim^a Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt ^b Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt

To cite this Article Elghandour, Ahmed H. H., Zohdi, Hussein F., Afeefy, Hussein Y. and Ibrahim, Mohamed K. A.(1992) 'STUDIES WITH ALKYLHETEROCYCLIC CARBONITRILES: A NOVEL SYNTHETIC ROUTE TO SEVERAL NEW ANNELATED PYRAZOLO[5,1-C]-1,2,4-TRIAZINE DERIVATIVES', Phosphorus, Sulfur, and Silicon and the Related Elements, 70: 1, 297 — 302

To link to this Article: DOI: 10.1080/10426509208049178 URL: http://dx.doi.org/10.1080/10426509208049178

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES WITH ALKYLHETEROCYCLIC CARBONITRILES: A NOVEL SYNTHETIC ROUTE TO SEVERAL NEW ANNELATED PYRAZOLO[5,1-C]-1,2,4-TRIAZINE DERIVATIVES

AHMED H. H. ELGHANDOUR, † HUSSEIN F. ZOHDI, † HUSSEIN Y. AFEEFY‡ and MOHAMED K. A. IBRAHIM†

†Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt and ‡Department of Chemistry, Faculty of Science, Mansoura University Mansoura, Egypt

(Received February 28, 1992; in final form April 21, 1992)

3-Phenylpyrazol-5-yl diazonium chloride (1a) was coupled with 2-aminocrotonitrile (4) to afford 4phenyl-6-methylpyrazolo[5,1-c]-1,2,4-triazine-7-carbonitrile (5). Upon reaction with sulfur, compound 5 was transformed into 8-amino-4-phenylthieno[4,3-e]pyrazolo[5',1'-c']-1,2,4-triazine. Compound 6 underwent 4 + 2 cycloaddition with several dipolarophiles such as maleic anhydride, N-phenylmaleimide and acrylonitrile to afford a variety of new annelated pyrazolo[5,1-c]-1,2,4-triazine derivatives via hydrogen sulfide elimination. The structures of the newly synthesized compounds were determined by elemental analyses and spectral data. A sequence leading to the formation of these compounds and their reactions is described.

Key words: 4 + 2 Cycloaddition; thieno[4,3-e]pyrazolo-triazines; annelated pyrolotriazines.

INTRODUCTION

The chemistry of condensed pyrazole derivatives has received considerable interest due to their biological importance. 1-3 In continuation to our interest in the synthesis of fused pyrazole derivatives as a potential antischistozomal agent, we report herein the synthesis of thieno [4,3-e] pyrazolo [5',1'-c']-1,2,4-triazine and pyrazolo [5,1-e]c]benzo[e]-1,2,4-triazine derivatives required for a medicinal chemistry program. Literature survey revealed that derivatives of such ring systems have not been synthesized.

It has been thought that such ring systems could be synthesized via a route similar to that reported for the naphthoanalogues⁵ (2). These compounds are easily obtained by coupling diazotized aminopyrazoles with 2-naphthol via dehydrocyclization which readily takes place under the reaction conditions. On the other hand, the reaction of diazotized aminopyrazole (Ia) with substituted phenol led only to the formation of the coupling products (3). Attempts to cyclize 3 into derivatives of 2 have failed which indicates that the formation of 2 from diazotized aminopyrazole and 2-naphthol does not involve an azo-derivative intermediate. It has been suggested that these reactions proceed via 4 + 2 cycloaddition mechanism.

Thus, an alternate route to the required derivatives of 2 was investigated. It has been found that, diazotized amino-pyrazole (1a) coupled readily with 2-aminocrotonitrile (4) to afford 4-aryl-6-methylpyrazolo[5,1-c]-1,2,4-triazine-7-carbonitrile (5). Structure 5 was established on the basis of elemental analyses and spectral data (ir

and ${}^{1}H$ nmr, cf. Tables I and II). Compound 5 reacted readily with sulfur in ethanol containing catalytic amount of triethyl amine to yield 8-amino-4-phenylthieno[4,3-e]pyrazolo[5',1'-c']-1,2,4-triazine (6). Structure 6 was also established on the basis of elemental analyses and spectral data (ir and ${}^{1}H$ nmr, cf. Tables I and II).

Scheme 1

Compound 6 is very versatile, and therefore can be utilized for further chemical transformations. Thus, the reaction of 6 with maleic anhydride and N-phenylmal-imide afforded addition products via hydrogen sulfide elimination. These products were formulated as 8a,b respectively, and are considered to be formed via the 4+2 cycloadduct intermediate 7. Acetylation of 6 afforded the N-acetyl derivative 9, which upon bromination in glacial acetic acid affected hydrolysis of the acetyl group to yield the dibromo-derivative 10. Compound 10 was also obtained by bromination of 6 in glacial acetic acid. Unlike compound 6, compound 9 did not add electron poor olefines while its bromoderivative 10 added maleic anhydride to yield 12 which was also obtained by bromination of 8a in glacial acetic acid.

TABLE I
Characterization of the newly synthesized compounds

Compd.	Solvent	m.p(C)	Yield (%)		Found			
					Calc	ed (%)	N	s
2	EtOH/Dioxan	238	71	C20H14N4	77.7	4.3	18.2	
				(310.360)	77.4	4.6	18.1	
3	EtOH/DMF	>300	67	$C_{15}H_{11}BrN_{4}O$	52.3	3.4	16.0	
				(343.189)	52.5	3.2	16.3	
5	EtOH	180	78	C13H9N5	66.8	3.6	30.0	
				(235.250)	66.4	3.9	29.8	
6	EtOH/DMF	>300	81	C13H9N5S	58.0	3.6	26.6	12.4
				(267.314)	58.4	3.4	26.2	12.0
8a	EtOH/DMF	290	66	C ₁₇ H ₉ N ₅ O ₃	61.8	2.4	21.4	
				(331.291)	61.6	2.5	21.1	
<i>8</i> b	EtOH/DMF	>300	59	$C_{23}H_{14}N_6O_2$	67.6	3.7	20.0	
				(406.405)	68.0	3.5	20.1	
9	EtOH/DMF	>300	56	$C_{15}H_{11}N_{5}OS$	58.0	3.7	22.8	10.5
				(309.351)	58.2	3.6	22.6	10.4
10	EtOH/DMF	>300	83	C ₁₃ H ₇ Br ₂ N ₅ S	37.0	1.9	16.8	7.8
				(425.116)	36.7	1.7	16.5	7.5
11	EtOH/DMF	>300	69	C11H1Br2N5O3	41.7	1.8	14.5	
				(489.093)	41.8	1.5	14.3	
12	EtOH/DMF ·	285	64	C ₁₂ H ₁₀ N ₆	66.9	3.6	29.1	
				(286.298)	67.1	3.5	29.4	
15	EtOH/DMF	>300	52	$c_{16}H_{12}N_{6}Os_{2}$	52.5	3.3	23.0	
				(368.441)	52.2	3.3	28.8	

The difference in reactivity between 6 and 9 can be rationalized in terms of the electronic effect of the acetyl group. Compound 6 is a strained electron rich thiophene derivative; these derivatives have recently been shown to add readily to electron poor olefines. 7 On the other hand, acylation of this derivative to 9 reduces the electron donating effect of the amino group, which in turn lowers the electron demand required to affect the cycloaddition reaction.

TABLE II
Spectroscopic data for the compounds listed in Table I

-	IR (cm ⁻¹)	
Compd.	(Selected bands)	lh NMR (8 ppm)
2	1610 (C=C)	6.3(s, 1H, pyrazole 4-H); 7.2-8.1(m,
		11H, aromatic protons).
<i>3</i>	3560 (OH); 3240 (NH)	
5	2220 (CN); 1600 (C=C)	2.1(s, 3H, CH ₃); 6.4(s, 1H, pyrazole
		4-H); $7.3-7.9(m, 5H, C_6H_5)$.
6	3250-3050 (NH ₂);	6.4(s, 1H pyrazole 4-H); 7.0-8.3(m,
	1600 (C=C).	8H aromatics and NH_2).
8a	3250-3080 (NH ₂); 1700	
	(CO); 1600 (C=C).	
<i>8</i> b	3300-3050 (NH ₂); 1680	
	(CO); 1590 (C=C).	
9	3150 (NH); 1650 (CO);	1.9(s, 3H, acetyl); 6.4(s, 1H, pyrazole
	1600 (C=C).	4-H); $7.3-8.1(m, 7H, aromatics and NH).$
10	3250-3050 (NH ₂); 1590	$7.9-7.2(m, 5H, C_6H_5); 9.1(s, 2H, NH_2).$
11	3320-3100 (NH ₂); 1710	$7.8-7.2(m, 5H, C_6H_5); 9.6(s, 2H, NH_2).$
	(CO); 1600 (C=C).	
12	3250-3150 (NH ₂); 2210	3.4(s, 2H, NH ₂); 6.3(s, 1H, pyrazole
	(CN); 1600 (C=C).	4-H); 7.1 (d, $\mathcal{J}9$ Hz, 2H, aromatic
		protons); 7.6(m, 5H, $C_{\delta}H_{\delta}$).
15	3170 (NH); 1660 (CO);	2.0(s, 3H, acetyl); 6.3(s, 1H, pyrazole
	1590 (C=C).	4-H); 6.9-7.4(m, 6H, $C_{6}H_{5}$ and NH); 8.7(s,
		2H, NH ₂).

The reaction of δ with acrylonitrile in pyridine afforded a product which could be formulated as I2 or the isomeric structure I3. Structure I2 is preferred based on its ¹H nmr spectrum, since the ring protons appeared as a doublet at δ 7.1 ppm with J=9 Hz, for o-coupling. If the product had the isomeric structure I3, one would expect a lower J value for m-coupling. Compound δ also reacted with ace-

tylisothiocyanate to yield a product which can be formulated as either the thiourea or the thiocarboxamide derivatives (14 and 15), respectively. Structure 14 was ruled out based on the 1H nmr spectrum. Proton nmr spectrum of 15 showed a two protons singlet at $\delta 8.7$ due to the presence of NH₂ group.

15

EXPERIMENTAL

13

All melting points are uncorrected. Ir spectra were recorded (KBr) using a Perkin-Elmer model 1430 ratio recording spectrometer. ¹H nmr spectra were measured on a Varian EM 390-90 NHz in CDCl₃

using TMS as internal standard and chemical shifts are expressed as δ ppm. Analytical data were obtained from the Microanalytical Center at Cairo University. Compounds Ia,b were prepared as reported.^{8,9}

Coupling reactions of 4-arylazo-3,5-diamino(1H)pyrazoles (1a,b). General procedure: A suspension of the aminopyrazole derivative (0.01 mol) was gradually added to a cold solution of 0.01 mol of each of 2-naphthol, 4-bromophenol or 2-aminocrotonitrile in 20 ml ethanol containing 0.02 mol sodium acetate with continuous stirring; to give 2, 3 and 5 respectively. The products were collected by filtration, washed with water and crystallized from the proper solvent.

8-Amino-4-phenylthieno[4,3-e]pyrazolo[5',1'-c']-1,2,4-triazine (6). To a solution of 5 (0.01 mol) in 25 ml absolute ethanol, sulfur (0.01 mol) and triethylamine (0.5 ml) were added. The resulting solution was refluxed for 3 h, cooled, poured into ice-cold water and then neutralized with conc. HCl. The solid so formed was collected by filtration, washed with water and crystallized from EtOH/DMF.

4 - Phenylpyrazolo[5,1 - c]benz[c]furo - and 10 - amino - 4,8 - diphenyl[5,1 - c]benz[c]pyrrolo - 1,2,4 - tri-azine-7,9-diones (8a,b). A mixture of 6 (0.01 mol) and each of maleic anhydride or N-phenylmaleimide (0.01 mol) in 30 ml pyridine was refluxed for 3 h, cooled to room temperature, poured into ice-cold water and acidified with conc. HCl. The resulting solid product was collected by filtration washed with water and crystallized from EtOH/DMF.

8-N-Acetylamino-4-phenylthieno[4,3-e]pyrzazolo[5',1'-c']-1,2,4-triazine (9). A mixture of 6 (0.01 mol), 20 ml glacial acetic acid and 10 ml acetic anhydride was refluxed for 2 h, cooled and poured into ice-cold water. The precipitated solid product was filtered off, washed with water and crystallized from EtOH/DMF.

8-Amino-3,6-dibromo-4-phenylthieno[4,3-e]pyrzolo[5',1'-c']-1,2,4-triazine (10). Method a: To a solution of 6 (0.01 mol) in 20 ml glacial acetic acid, bromine (0.02 mol) was gradually added at room temperature. The reaction mixture was stirred for further 3 h, then diluted with water (80 ml). The resulting solid product was collected by filtration and crystallized from EtOH/DMF.

Method b: The same procedure as described in "method a" was followed, starting with compound 9 to give compound 10.

10-Amino-3,6-dibromo-4-phenylpyrazolo[5,1-c]benz[c]furo-1,2,4-triazine-7,9-dione (11). Method a: A mixture of 10 (0.01 mol) and maleic anhydride (0.01 mol) in 30 ml pyridine was heated under reflux for 3 h, cooled, poured into ice-cold water and acidified with conc. HCl. The precipitated solid was collected by filtration and crystallized from EtOH/DMF.

Method b: To a solution of 8a (0.01 mol) in 20 ml glacial acetic acid, bromine (0.02 mol) was gradually added with stirring at room temperature. The reaction mixture was further stirred for 3 h, diluted with water (80 ml); the so formed solid product was collected by filtration and crystallized from EtOH/DMF

8-Amino-4-phenylpyrazolo[5,1-c]benz[e]triazine-7-carbonitrile (12). A mixture of 6 (0.01 mol) and acrylonitrile (0.01 mol) in 30 ml pyridine was refluxed for 3 h, cooled to room temperature, poured into ice-cold water and acidified with conc. HCl. The resulting solid was filtered off, washed with water and crystallized from EtOH/DMF.

6-Acetylthiocarboxamido-8-amino-4-phenylthieno[4,3-e]pyrazolo[5',1'-c']-1,2,4-triazine (15). To a solution of 6 (0.01 mol) in 20 ml dry acetone, acetylisocyanate (0.01 mol) was added. The reaction mixture was heated under reflux for 2 h, cooled to room temperature and poured into ice-cold water. The precipitated solid was collected by filtraton and crystallized from EtOH/DMF.

REFERENCES

- 1. S. Sugiura, S. O. Kato and T. Wakayama, J. Pharm. Soc. Jpn., 97, 719 (1977).
- G. D. Diana, P. M. Carabateas, G. L. William, I. Panicic and B. A. Steinberg, J. Med. Chem., 24, 431 (1981)
- 3. S. Gelin, B. Chentegrel and C. Deshayes, J. Heterocycl. Chem., 19, 789 (1982).
- 4. M. M. Ramiz, A. H. H. Elghandour, M. K. A. Ibrahim and O. E. R. Mansour, Arch. Pharm. (Weinheim), 322, 557 (1989).
- M. R. H. Elmoghayar, M. K. A. Ibrahim, I. El-Sakka, A. H. H. Elghandour and M. H. Elnagdi, Arch. Pharm. (Weinheim), 316, 697 (1983).
- 6. M. H. Elnagdi, E. M. Zayed and S. Abdou, Heterocycles, 19, 559 (1982).
- 7. M. H. Elnagdi, A. M. Negem, A. W. Erian, Liebigs Ann. Chem., 1255 (1989).
- 8. M. H. Elnagdi, M. R. H. Elmoghayar, D. H. Fleita and S. M. Fahmy, J. Org. Chem., 42, 378
- 9. M. H. Elnagdi, M. K. A. Ibrahim and H. H. Alnima, Z. Naturforsch. 33b, 216 (1978).